A Surprise From the Supervolcano Under Yellowstone


Ms. Shamloo later analyzed trace crystals in the volcanic leftovers, allowing her to pin down changes before the supervolcano’s eruption. Each crystal once resided within the vast, seething ocean of magma deep underground. As the crystals grew outward, layer upon layer, they recorded changes in temperature, pressure and water content beneath the volcano, much like a set of tree rings.

“We expected that there might be processes happening over thousands of years preceding the eruption,” said Christy Till, a geologist at Arizona State, and Ms. Shamloo’s dissertation adviser. Instead, the outer rims of the crystals revealed a clear uptick in temperature and a change in composition that occurred on a rapid time scale. That could mean the supereruption transpired only decades after an injection of fresh magma beneath the volcano.

The time scale is the blink of an eye, geologically speaking. It’s even shorter than a previous study that found that another ancient supervolcano beneath California’s Long Valley caldera awoke hundreds of years before its eruption. As such, scientists are just now starting to realize that the conditions that lead to supereruptions might emerge within a human lifetime.

“It’s shocking how little time is required to take a volcanic system from being quiet and sitting there to the edge of an eruption,” said Ms. Shamloo, though she warned that there’s more work to do before scientists can verify a precise time scale.

Kari Cooper, a geochemist at the University of California, Davis who was not involved in the research, said Ms. Shamloo and Dr. Till’s research offered more insights into the time frames of supereruptions, although she is not yet convinced that scientists can pin down the precise trigger of the last Yellowstone event. Geologists must now figure out what kick-starts the rapid movements leading up to supereruptions.

“It’s one thing to think about this slow gradual buildup — it’s another thing to think about how you mobilize 1,000 cubic kilometers of magma in a decade,” she said.

As the research advances, scientists hope they will be able to spot future supereruptions in the making. The odds of Yellowstone, or any other supervolcano, erupting anytime soon are small. But understanding the largest eruptions can only help scientists better understand, and therefore forecast, the entire spectrum of volcanic eruptions — something that Dr. Cooper thinks will be possible in a matter of decades.

Correction: October 11, 2017

An earlier version of a home page headline for this article misstated the location of a supervolcano that drives geological activity. It is beneath Yellowstone National Park, not Yosemite. Additionally, the amount of material that could be expelled by the supervolcano was miscalculated. It is 2,500 times more than erupted from Mount St. Helens in 1980, not 250,000.

Continue reading the main story



Read more

Leave A Comment

Your email address will not be published. Required fields are marked *